Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

نویسندگان

  • Jin Hee Park
  • Na Kyung Lee
  • Soo Young Lee
چکیده

Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-κB ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptor-associated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). Activated NF-κB induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces Ca2+ oscillation via activated phospholipase Cγ2 (PLCγ2) together with c-Fos/AP-1, wherein Ca2+ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice.

Regulation of the formation and function of bone-resorbing osteoclasts (OCs) is a key to understanding the pathogenesis of skeletal disorders. Gene-targeting studies have shown that the RANK signaling pathway plays a critical role in OC differentiation and function. Although pharmaceutical blockade of RANK may be a viable strategy for preventing bone destruction, RANK is implicated in multiple ...

متن کامل

Signaling Pathways in Osteoclast Differentiation

Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate oste...

متن کامل

FHL2 inhibits the activated osteoclast in a TRAF6-dependent manner.

TNF receptor-associated factor 6 (TRAF6) associates with the cytoplasmic domain of receptor activator of NF-kappaB (RANK). This event is central to normal osteoclastogenesis. We discovered that TRAF6 also interacts with FHL2 (four and a half LIM domain 2), a LIM domain--only protein that functions as a transcriptional coactivator or corepressor in a cell-type--specific manner. FHL2 mRNA and pro...

متن کامل

Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice

Tak1 is a MAPKKK that can be activated by growth factors and cytokines such as RANKL and BMPs and its downstream pathways include NF-κB and JNK/p38 MAPKs. Tak1 is essential for mouse embryonic development and plays critical roles in tissue homeostasis. Previous studies have shown that Tak1 is a positive regulator of osteoclast maturation, yet its roles in bone growth and remodeling have not bee...

متن کامل

Osteoclast differentiation independent of the TRANCE–RANK–TRAF6 axis

Osteoclasts are derived from myeloid lineage cells, and their differentiation is supported by various osteotropic factors, including the tumor necrosis factor (TNF) family member TNF-related activation-induced cytokine (TRANCE). Genetic deletion of TRANCE or its receptor, receptor activator of nuclear factor kappaB (RANK), results in severely osteopetrotic mice with no osteoclasts in their bone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2017